Everything about assembly
Welcome back to the eighteenth and final part of "Making our own executable packer".
In the last article, we had
a lot of fun. We already had a "packer" executable, minipak
, which joined
together stage1
(a launcher), and a compressed version of whichever executable
we wanted to pack.
Welcome back!
In the last article, we
did foundational work on minipak
, our ELF packer.
It is now able to receive command-line arguments, environment variables, and
auxiliary vectors. It can parse those command-line arguments into a set of
options. It can make an ELF file smaller using the LZ4 compression
algorithm, and pack
it together with stage1
, our launcher.
And we're back!
In the last article, we thanked our old code and bade it adieu, for it did not spark joy. And then we made a new, solid foundation, on which we planned to actually make an executable packer.
You're still here! Fantastic.
I have good news, and bad news. The good news is, we're actually going to make an executable packer now!
Good morning, and welcome back to "how many executables can we run with our custom dynamic loader before things get really out of control".
Welcome back and thanks for joining us for the reads notes... the thirteenth installment of our series on ELF files, what they are, what they can do, what does the dynamic linker do to them, and how can we do it ourselves.
In our last installment of
"Making our own executable packer", we did some code cleanups. We got rid of
a bunch of unsafe
code, and found a way to represent memory-mapped data
structures safely.
In the last article, we managed to load a program (hello-dl
) that uses a single
dynamic library (libmsg.so
) containing a single exported symbol, msg
.
Let's pick up where we left off: we had just taught elk
to load
not only an executable, but also its dependencies, and then their
dependencies as well.
Up until now, we've been loading a single ELF file, and there wasn't much
structure to how we did it: everyhing just kinda happened in main
, in no
particular order.
In our last article, we managed to load and execute a PIE (position-independent executable) compiled from the following code:
; in `samples/hello-pie.asm` global _start section .text _start: mov rdi, 1 ; stdout fd lea rsi, [rel msg] mov rdx, 9 ; 8 chars + newline mov rax, 1 ; write syscall syscall xor rdi, rdi ; return code 0 mov rax, 60 ; exit syscall syscall section .data msg: db "hi there", 10
The last article, Position-independent code, was a mess. But who could blame us? We looked at the world, and found it to be a chaotic and seemingly nonsensical place. So, in order to blend in, we had to let go of a little bit of sanity.
In the last article, we found where code was hiding in our samples/hello
executable, by disassembling the whole file and then looking for syscalls.
In part 1, we've looked at three executables:
sample
, an assembly program that prints "hi there" using thewrite
system call.entry_point
, a C program that prints the address ofmain
usingprintf
- The
/bin/true
executable, probably also a C program (because it's part of GNU coreutils), and which just exits with code 0.
Executables have been fascinating to me ever since I discovered, as a kid,
that they were just files. If you renamed a .exe
to something else, you
could open it in notepad! And if you renamed something else to a .exe
,
you'd get a neat error dialog.
Now that we've found the best way to find the "default network interface"... what can we do with that interface?
Looking at that latest mental model, it's.. a bit suspicious that every program ends up calling the same set of functions. It's almost like something different happens when calling those.